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Static phase and dynamic scaling in a deposition model with an inactive species
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We extend a previously proposed deposition model with two kinds of particle, considering the restricted
solid-on-solid condition. The probability of incidence of parti€l€A) is p (1—p). Aggregation is possible if
the top of the column of incidence has a nearest neighbard if the difference in the heights of neighboring
columns does not exceed 1. For any valugof0, the deposit attains some static configuration, in which no
deposition attempt is accepted. If-1 dimensions, the interface width has a limiting vall¥g~p~ 7, with
n=23/2, which is confirmed by numerical simulations. The dynamic scaling rel&ignp~ 7f(tp?) is ob-
tained in very large substrates, withk 7.
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[. INTRODUCTION Here we will study the model id=1. We will show that
a dynamic transition occurs @t=0 because any finite flux

Statistical growth models of surfaces and interfaces havef particlesC will eventually suppress the growth process.
attracted much attention in the last two decades, motivatedhus, atp>0 the model presents a static phase, i.e., the film
by technological applications of thin films and related nano-attains a configuration that cannot continue growing because
structureg 1—4]. In recent work, models with two types of no deposition attempt can be accepted. The interface width at
particle were introduced, in order to represent the effects o$aturation scales with with an exponent; that can be ex-
different chemical species in deposition procesges12.  actly obtained. It is also shown that the dynamic exponent of
The competition of different growth mechanisms may lead tathe model isz= 7. The features of this static phase differ
crossover of growth exponents and roughening transitions, gsom the dynamic nature of the smooth phases of other mod-
observed in many systems with a single spefiss-20. els with roughening transitions, such as those including com-

A particularly interesting two-species model was pro-petition between adsorption and desorption of adatifis
posed by Wang and Cerdeif&], which will be called the 17]. However, there are many important open questions in
AC model. In that model, particles andC are released with the field of roughening transitions, such as the exponents’
probabilities - p and p, respectively, and aggregation is relations[14], thus some results presented here may also be
allowed only if the incident particle encounters a neighbor-helpful in that context.
ing A at the sticking positionNwhich may be defined by The rest of the paper is organized as follows. In Sec. Il we
different rules. Thus, particlesC represent impurities that present the simulation results and discuss the transitign at
block the growth in their neighborhoods. For highthe =0. In Sec. lll, we obtain a dynamic scaling relation for the
surface will be contaminated with this species and thenterface width. In Sec. IV we present our conclusions.
growth process will fail. In previous work, the crossover of
growth exponents was studied in the growth reg(i®He7].

In the present work, we will consider the restricted solid- Il. NUMERICAL SIMULATIONS AND THE DYNAMICAL
on-solid(RSOS version of theAC model. The RSOS model TRANSITION
was introduced by Kim and Kosterlitz in 1989 to describe
the growth of thin films in which the height differences be-
tween neighboring columns do not exceed a certain limitin
valueAH .. This condition prevents the formation of high
local slopes in the film surfad@1]; thus it is interesting for

The main quantity of interest in deposition models is the
interface widthw of the deposit. In a surface of length(L¢
olumng, at timet, W is defined as

the description of deposition processes in which diffusion O a O O
and desorption mechanisnisot explicitly included in the ; ‘ ‘ ‘
mode) favor the formation of locally smooth surfaces.

The RSOS version of th&C model is defined as follows. x X X
At each deposition attempt, an incident partiéleor C is - 1
chosen with the probabilities-1p andp, respectively. This [ Eﬂ EE:' L
particle is released abovedadimensional substrate in a ran- (a) (b) (©) (d)

domly chosen column. The sticking position for the incident

particle is the top of the selected column, but aggregation is £ 1. Examples of application of the deposition rules of the
possible only if both the following conditions are satisfied: Rsos version of théC model. Open squares represent partidies
(a) the difference in the heights of neighboring columns doegn( filled squares represent particl@sin (a), the aggregation at-
not exceed\H ,,,= 1; (b) the sticking position has a nearest tempt is not accepted because there is no neighbéviighe top of
neighbor particleA. If one or both conditions are not satis- the column. In(b), this neighbor is preserithe dashed square in-
fied, then the deposition attempt is rejected. Figure 1 illusdicates the sticking positionin (c) and(d), the aggregation attempt
trates the deposition rules. is not accepted because it would violate the RSOS condition.
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FIG. 2. Example of a final static deposit fgg=0.1 and (a) (b)

L=128. FIG. 4. (a) Saturation heighti(p,) in very large substrates

versus probabilityp of incidence of particle€; (b) saturation width
(1) W(p,>) versus probabilityp. Solid lines are least squares fits.
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width diverges a4 “, with >0 [Eq. (2)]. Extrapolations to

whereh; is the height of colum, the overbar o denotes L—% give W¢(p,) and the average saturation height
a spatial average, and the angular brackets denote a configfds(P.>). The errors irHy(p,=) are usually lower than 1%,
rational average, i.e., an average over many realizations ¢fd the errors iWy(p,>) are nearly 10%.

the noise. In Fig. 4@ we plot loggHs(p,*) vsloggp and in Fig.
In the pure RSOS modebp0), W obeys the dynamic 4(b) we plot logoWy(p,) vsloggp. These quantities scale
scaling relation as
W=~ L*f(tL"?). 2) Wq(p,%)~Hs(p,®)~p~7, 3

The exponents andz are consistent with the Kardar-Parisi- With 7=1.509 obtained from the least squares fit of khe
Zhang (KP2) theory [22], which provides a hydrodynamic data, andn_= 1.515 obtained from the fit of thws_ data.
description of kinetic surface roughening. ds- 1, the KPZ These relations show that the growth process will actually
equation gives the exact values=1/2 andz=3/2[22]. fail for any p>0.

We simulated the RSOS version of t#eC model for Our numerical results suggest the exact vakye 3/2,
several values op, most of them betweep=0.003 andp which can be obtained using scaling arguments, as follows.
—0.02. Substrates of lengthsfrom L=256 to L =65 536 The onsgt of triplets of particle€ is responsible for. the
were considered, with periodic boundaries. During the simuSuPpression of the growth proceass, and each blocking con-
lations, the time was measured as the number of depositiofguration has probability of ordgs~. A mound of triangular
attempts per column; thus one time unit corresponds to Shapelbetween valleys containing triplets 6f has a height
deposition attemptéaccepted or ngt For eachp andL, we of orderWg; thus the number of particlesin the mound is
generated 10 sets with d@lifferent deposits in each, and Of orderW;. Thus, for smallp, W2~ 1/p®, giving 7=3/2.
calculated error bars from the fluctuations of the average
values of the different sets. IIl. DYNAMIC SCALING

In all cases, the growth process fails at sufficiently long o
times, when the interface width attains a limiting value 1he weak finite-size effects for lardesuggest that a dy-
W(p,L). In Fig. 2 we show a deposit fop=0.1 andL namic scaling relation in th.e. static phas_e must pe expressed
—128 in which no aggregation is possible. Notice that the®nly in terms of the probabilitp and the timet, while terms
deposit is faceted, consisting of a set of droplets of triangulafnvolving the lengthL will be (vanishing corrections to scal-
shape. In the valleys of the deposit, there are triplets of par9- _ _
ticles C with the structure shown in Fig. 3. Eventually, ~ For very largeL, we propose the scaling relation
groups of four or more particle§ may create such valleys,
but they are much less probable than the tripletsig small.

These structures and the RSOS condition are responsible for ) o ]
the suppression of the growth process. where 7 is a characteristic time for the onset of correlations

For any p>0, the saturation widthW, converges to a between theC triplets, andz is a dynamic exponent: is a
finite value with vanishing 1/ corrections. This contrasts Measure of the number of layers of the deposit when these

with the behavior of moving phases, where the saturatioffOrelations appear; thus we expect thatHs. SinceHs
also scales with the exponent[Eg. (3)], we obtain

W=~p~ "f(t/7), 7~p % (4

z2=n=75. (5)

In order to test relation5) with the above exponents, we
plot Wp” versustp? in Fig. 5, considering three values pf

FIG. 3. Triplet of particlesC (filled squares which occupies P=0.005,p=0.01, andp=0.02. Those data were obtained
most valleys of the static deposits, surroundedAoyarticles. in substrates with. =65 536, which are sufficiently large to
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FIG. 5. Log-linear plot ofWp” versustp? with »=z=3/2,
using data obtained in substrates witk 65 536 and probabilities
p=0.02(squarel p=0.01(triangleg, andp=0.005(crosses

minimize finite-size effects. The good data collapse in Fig.
confirms the validity of the scaling relatid).

Finally, it is interesting to notice the divergence of the
data for differentp att=<0.50"%, as shown in Fig. 5. At very
short times, we expect that the interface width scales as
the pure RSOS model, with no dependencegbecause the
effects of C particles are negligible. Then the pure RSOS
model regime, in which the width increases with timet %%
becomes just a transient region for gmy 0.

IV. DISCUSSION AND CONCLUSION

We studied a deposition model with two types of particle
A and C, in which incident particles can stick only at posi-
tions that have a neighborirgand if the RSOS condition is
satisfied. For any flux of particle§, the growth eventually

fails, due to the RSOS condition and the formation of triplets

of C. The saturation widthW; is obtained in the static final
configurations in sufficiently large substrates. Scaling argu
ments show that it scales ¥¢,~ p~ % for smallp, and this
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probability p and the deposition time[Eq. (4)].

This model represents some growth mechanisms in the
presence of impurities. As proposed in RH], it may de-
scribe the effects of the deposition of an active partitbat
reacts with a previously aggregated partidland forms the
inactive particleC. In the present RSOS version, small con-
centrations of the impurity may suppress the growth process,
with the inactive particles forming the pinning centers. The
blocking configurations depend on the particular model con-
sidered(for instance, they will change for differettH ),
and the value of the exponemt depends on the number of
particlesC in those configurations. In a deposit with simple
cubic lattice structuréwhich is more suitable for real appli-
cationg andAH =1, configurations with five particleS
will form the pinning centers, and the supression of the

5growth process will also be observed.

Previous work has also shown transitions from a moving
phase to a smooth phadd3,14,16,1T7. In the moving
phases, as the critical points are approached, the growth ve-
locities continuously decrease to zero. The smooth or an-
Bhored phases correspond to the actiomlered phases of
other processes, such as directed percolation. The present
model has many differences from those. First, the growth
velocity changes discontinuously from a finite value pat
=0 (pure RSOS modglo zero atp>0. Furthermore, if we
consider the order parameteks; defined in Ref.[14] (i
=1,2,...), weobtainM;=0 in the static phase, since there
is no preferential level for the pinning centdsee Fig. 2.
Thus, this phase is not ordered in that sense. Despite those
differences, we expect that the analysis that led to the dy-
namic scaling relatiori4) may be extended to other systems
and may be useful to predict relations between growth
exponents.
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